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Abstract

In this paper we present an extended Truncated Hierarchical Catmull-Clark Subdivision (eTHCCS) method, which
improves the efficiency of local refinement in Truncated Hierarchical Catmull-Clark Subdivision (THCCS). We first
generalize Stam’s Catmull-Clark basis functions for elements with more than one extraordinary node. In this manner
we build a set of basis functions over arbitrary quadrilateral meshes and enable isogeometric analysis on such meshes
without any preprocessing. Then, a new basis-function-insertion scheme is developed with the aid of the truncation
mechanism, which refines one-ring neighboring elements rather than two-ring neighborhoods. Therefore, eTHCCS
significantly improves the efficiency of local refinement compared with THCCS, as demonstrated by one benchmark
problem and several complex models. Moreover, eTHCCS is also proved to preserve the input geometry and produce
nested spaces.

Keywords: Local refinement, truncated hierarchical Catmull-Clark subdivision, arbitrary control meshes,
isogeoemtric analysis.

1. Introduction

Local refinement and arbitrary topology have been two key concerns since isogeometric analysis [12, 5] was pro-
posed. Isogeometric analysis aims to integrate engineering design with simulation by employing the basis used for ge-
ometric design in analysis. Local refinement was studied in hierarchical B-splines [8, 14, 25, 2], T-splines [23, 22, 1],
PHT-splines [6], LR-splines [7, 13], THB-splines [9, 10, 29] and Truncated Hierarchical Catmull-Clark Subdivision
(THCCS) [28]. Among them, hierarchical B-splines and THB-splines are restricted to a topologically rectangu-
lar domain, and thus they have limited applications in complex geometries. T-splines support arbitrary topologies
[27, 26, 16], but the original development of T-splines may violate one prerequisite requirement in analysis, i.e., linear
independence [3]. A mildly restricted subset, analysis-suitable T-splines [15, 21], was subsequently developed to ad-
dress the linear independence issue. However, local refinement of analysis-suitable T-splines may propagate beyond
the domain of interest via excessive T-junction extension. PHT-splines support arbitrary topology and element-wise
local refinement with a trade-off in almost twice the number of degrees of freedom and reduced continuity (C1 for
cubic splines). THCCS, on the other hand, addresses both local refinement and arbitrary topology without introducing
extra degrees of freedom and attains C2 continuity.

THCCS [28] was developed based on Catmull-Clark subdivision [4, 30, 19]. Catmull-Clark subdivision is a
popular quadrilateral-based subdivision scheme that is generalized from mid-knot insertion of bi-cubic B-splines
to arbitrary topologies. A Catmull-Clark surface is represented by a quadrilateral mesh, which is obtained by an
iterative and global refinement of an initial coarse quadrilateral mesh. The sequence of refined meshes converges to
a limit surface that is C2-continuous everywhere except C1-continuous at extraordinary vertices (a vertex is called
an extraordinary vertex if it has other than four quadrilaterals adjacent to it, and it is a regular vertex otherwise). In
this paper, vertex and quadrilateral are used in the physical domain, and correspondingly in the parametric domain,
their preimages are referred to as node and element, respectively. Alternatively, the limit surface can be directly
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evaluated from the initial quadrilateral mesh by Stam’s basis functions [24]. The quadrilateral mesh is called the
control mesh of the Catmull-Clark surface. Based on Stam’s Catmull-Clark basis functions, THCCS takes advantage
of the hierarchical structure and truncation mechanism to support local refinement and preserve geometry. THCCS has
desired properties for geometric design and analysis such as partition of unity, convex hull, linear independence, and
support of arbitrary topology. However, two requirements in THCCS restrict the efficiency of local refinement: (1) at
most one extraordinary vertex is allowed in each quadrilateral in the control mesh; and (2) for each to-be-refined basis
function, all its two-ring neighboring elements have to be refined. Requirement (1) is inherited from the development
of Stam’s Catmull-Clark basis functions [24]. In THCCS, this requirement is satisfied by refining all the quadrilaterals
that contain more than one extraordinary control point (such quadrilaterals are called invalid). The input quadrilateral
mesh may contain a large number of quadrilaterals that violate Requirement (1), leading to almost global refinement.
Requirement (2) follows the basis-function-refinement manner in hierarchical B-splines [14, 11, 25, 2]. For cubic
hierarchical B-splines and Catmull-Clark subdivision, however, such basis-function-refinement needs to refine all the
two-ring neighboring elements of each to-be-refined basis function, which is not efficient in capturing abrupt changes
in geometric or solution features.

To improve the efficiency of local refinement in THCCS, in this paper we develop the extended Truncated Hierar-
chical Catmull-Clark Subdivision (eTHCCS). We first make a straightforward generalization of Stam’s Catmull-Clark
basis functions to enable their direct application on arbitrary control meshes, where more than one vertex is allowed in
a single quadrilateral. This generalization eliminates the requirement of refining invalid quadrilaterals, and provides a
set of basis functions for isogeometric analysis on arbitrary quadrilateral meshes. The analysis-suitability on irregular
quadrilateral meshes is also studied for the generalized Catmull-Clark basis functions. The main contribution of this
paper is the development of a new basis-function-insertion scheme for local refinement to improve its efficiency by
releasing the restriction on the to-be-refined region. In THB-splines or THCCS, the to-be-refined region is restricted to
be the support of to-be-refined basis functions, which is the union of two-ring neighboring elements of the associated
nodes in the case of cubic splines. In addition to preserving all the properties of THCCS, eTHCCS therefore achieves
a higher efficiency in local refinement.

The remainder of this paper is organized as follows. Section 2 reviews the basic concepts of THCCS. Section
3 introduces the detailed development of eTHCCS. In Section 4, we study the geometry preservation and nested
property of eTHCCS. We then demonstrate the efficiency of the proposed method in Section 6, and conclude the
paper in Section 7.

2. A Review of Truncated Hierarchical Catmull-Clark Subdivision

In this section we briefly review the key concepts of THCCS. For details one may refer to related literature
[4, 30, 24, 14, 25, 2, 9, 28].

2.1. Stam’s Catmull-Clark Basis Functions

THCCS was developed based on Stam’s Catmull-Clark basis functions. It is a natural starting point to introduce
Catmull-Clark subdivision and its basis functions. Catmull-Clark is one of the most popular subdivision schemes
used in the CAD community. The refinement (or subdivision) in Catmull-Clark subdivision is generalized from mid-
knot insertion of bi-cubic B-splines [4]. Each new vertex in the refined mesh is calculated via a weighted average
of neighboring vertices in the original mesh. This linear relationship can be expressed by a so-called subdivision
matrix. The repeated global refinement generates a sequence of meshes,M0, . . . ,Mn, whereM0 is the initial input
quadrilateral mesh, and n is the number of subdivisions. As n goes to infinity, Mn converges to a limit surface. An
alternative way to obtain the limit surface takes advantage of the Stam’s basis functions [24]. These basis functions
are analogous to B-spline basis functions, whereas each meshM` (0 ≤ ` ≤ n) behaves as a control mesh. Thus we
can express the limit surface Slimit by a mapping from the parametric domain to the physical domain,

Slimit(ξ, η) =

N`∑
i=1

B`i (ξ, η)P`
i , (1)
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where B`i (ξ, η) are Stam’s Catmull-Clark basis functions, ξ and η are parametric coordinates, P`
i are control points

(or vertices) in the physical domain, and N` is the number of basis functions ofM`. We call ` the subdivision level.
Without loss of generality, we introduce the basis functions at Level ` as follows.

(a) (b) (c) (d)

Figure 1: Local parametric elements. (a) A regular element (blue); (b) an irregular element (blue); (c) subdivision of (b); and (d) subdivisions in
the parametric domain. The local parametric domain is [0, 1] × [0, 1]. Nodes are locally numbered with respect to the element marked in blue.

A Catmull-Clark subdivision surface generally does not have a global rectangular parametric domain due to the
presence of extraordinary nodes. A parametric element is locally associated with each quadrilateral in the control mesh
and each control point has a corresponding node in the parametric domain. If an element contains any extraordinary
node, it is irregular, and otherwise it is regular. Fig. 1(a) shows a local mesh surrounding a regular element (shaded in
blue). A total of 16 basis functions have support over this regular element because a Catmull-Clark basis function has
local support over its two-ring neighboring elements. They are actually bi-cubic uniform B-spline basis functions,

B0
i (ξ, η) = b(i−1)%4(ξ)b(i−1)/4(η), i = 1, 2, . . . , 16, (2)

where “%” and “/” represent the remainder and division, respectively, and for t ∈ [0, 1] we have

b0(t) = (1 − 3t + 3t2 − t3)/6, b1(t) = (4 − 6t2 + 3t3)/6, (3)
b2(t) = (1 + 3t + 3t2 − 3t3)/6, b3(t) = t3/6. (4)

Fig. 1(b) shows a local mesh surrounding a valence-3 vertex1, where an irregular element (Ω`
0) is marked in

blue. The surrounding 2N + 8 (N is the valence number and here N = 3) basis functions have support on Ω`
0, whose

associated vertices are locally labeled in the manner shown in Fig. 1(b). The 2N + 8 basis functions over Ω`
0 are

derived by infinitely subdividing Ω`
0 [24]. In the first subdivision, Ω`

0 is subdivided into one smaller irregular element
Ω`+1

0 and three regular elements Ω`+1
k (k = 1, 2, 3); see Fig. 1(c). The new 2N +17 vertices in Fig. 1(c) can be obtained

from the 2N + 8 vertices in Fig. 1(b) via a subdivision matrix Ā(2N+17)×(2N+8). As the basis functions are well-defined
on Ω`+1

k (k = 1, 2, 3) as in Fig. 1(a), the limit surface corresponding to the 3/4 parametric domain of Ω`
0 is represented

as

(B`)T P` = (B`+1)T P`+1 = (B`+1)T ĀP` = (ĀT B`+1)T P`, (5)

where B` = [B`1, . . . , B
`
2N+8]T , P` = [P`

1, . . . , P
`
2N+8]T , B`+1 = [B`+1

1 , . . . , B`+1
2N+17]T , and P`+1 = [P`+1

1 , . . . , P`+1
2N+17]T .

Eq. (5) holds for any P`, so we have

B` = ĀT B`+1. (6)

The remaining 1/4 parametric domain of Ω`
0 is the irregular element Ω`+1

0 . We need to further subdivide Ω`+1
0 to

find another 3/4 parametric domain of Ω`+1
0 where basis functions are well-defined. By repeating this procedure, the

1The valence number of a node is the number of elements adjacent to it.
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parametric domain corresponding to the irregular element becomes exponentially smaller, as shown in Fig. 1(d). The
repeated subdivision occurs in the irregular element. Note that the subdivision of Ω`+1

0 only involves the first 2N + 8
vertices in Fig. 1(c). Therefore the sub-matrix consisting of the first 2N +8 rows of Ā will be repeatedly used, denoted
as A(2N+8)×(2N+8). For computational efficiency, the eigenstructure (Λ,V) of A (AV = VΛ) is employed such that only
diagonal matrix multiplication is required. In this manner, the basis functions at Level ` over the irregular element Ω`

0
is derived as

B`(ξ, η) = (V−1)TΛn−1(PkĀV)T b(ξ, η), (7)

where b(ξ, η) are the uniform bi-cubic B-spline basis functions as in Eq. (2). Given parametric coordinates (ξ, η), we
perform subdivision n times to restrict (ξ, η) into a regular element (Ωn

k , k = 1, 2, 3) as in Fig. 1(d). Pk (k = 1, 2, 3)
is a selection matrix to locate such regular element. The configuration of A and Ā can be found in the appendix A in
Stam’s work [24], which only depends on the valence of the extraordinary node. When the parametric values (ξ, η)
approach zero, Eq. (7) is defined as a limit case where Λn−1 becomes a matrix such that only its first diagonal element
is non-zero. This is because in the diagonal matrix Λ, all the elements are positive and smaller than 1 except for the
first element, which equals to 1. Eq. (6) is also valid over Ω`+1

0 [28], where basis functions are defined by Eq. (7).
Eq. (6) indicates a general relationship between basis functions at two consecutive levels. We call this relationship
refinability, and we define high-level basis functions B`+1 as the children of low-level basis functions B` in Eq. (6).
Refinability is fundamental to the construction of THCCS.

However, Eq. (7) does not work for all quadrilateral meshes because its derivation requires that each quadrilateral
contains at most one extraordinary node. Usually, an input quadrilateral mesh needs to be globally refined once before
Stam’s basis functions are applied.

2.2. Truncated Hierarchical Catmull-Clark Subdivision
THCCS [28] generalizes truncated hierarchical B-splines (THB-splines) [9] to control meshes of arbitrary topol-

ogy. THB-splines were developed to further modify the hierarchical B-spline basis functions to form a partition of
unity and to decrease overlapping. However, THB-splines can only be used to represent the geometries with a global
parametric domain. Complex geometries unavoidably involve extraordinary nodes and thus cannot be mapped onto
a global parametric domain. Based on this fact, THCCS was developed as an attempt to address local refinement on
arbitrary topologies.

Starting from a valid input quadrilateral mesh, we recursively construct THCCS. The recursive manner allows us
to consider two consecutive levels at one time. We now construct Level ` + 1 from Level `. Level-` basis functions
are denoted as B`. The THCCS space can be enlarged by replacing the identified basis functions (B`r ⊆ B

`) with their
children (chdB`r). After the refinement of B`r , we define active Level-` basis functions as B`\B`r , and the children
basis functions of B`r (chdB`r) are the active Level-(` + 1) basis functions. Only active basis functions are collected
into THCCS basis. Besides, if a Level-` basis function B`i ∈ B

`\B`r has any children contained in chdB`r , it has
to be truncated in order to form a partition of unity and to preserve the geometry. The truncation is performed by
discarding active children from the refinability relationship. Recall that according to refinability, B`i can be expressed
as B`i =

∑
B`+1

j ∈chdB`i
ci jB`+1

j , where coefficients ci j come from the subdivision matrix Ā. Then the truncation of B`i is
obtained by

trunB`i =
∑

B`+1
j ∈chdB`i and B`+1

j <chdB`r

ci jB`+1
j . (8)

Finally, we collect active basis functions at Level ` and Level ` + 1 into the THCCS basis. Other high levels can be
constructed likewise and the THCCS basis is updated accordingly. The above procedure can be recursively performed
until the desired maximum level `max is reached.

THCCS basis functions satisfy partition of unity, convex hull property, linear independence with the support of
local refinement, and arbitrary topologies. However, the basis-function-refinement nature requires refinement of two-
ring neighborhood of a basis function at each refinement step, leading to the refinement of all the elements within
its support. eTHCCS is therefore developed to improve the efficiency of local refinement with a new basis-function-
insertion, in which we only need to refine one-ring neighboring elements. This new scheme releases the strong
restriction of the minimum number of to-be-refined elements. Details of eTHCCS will be discussed next in Section 3.
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3. Development of eTHCCS

In this section, we discuss how to develop eTHCCS. First, we generalize the Catmull-Clark basis functions for
elements with arbitrary numbers of extraordinary nodes, eliminating the requirement of refining such elements in
order to use Stam’s basis functions. In this manner we build the basis suitable for isogeometric analysis over arbitrary
quadrilateral meshes. Then we develop a new basis-function-insertion scheme to improve the locality of refinement,
releasing the restriction of the to-be-refined region. With this scheme, we can refine even only one element at each
refinement step, rather than refining two-ring neighborhoods of elements in THCCS. Finally, we use the generalized
Catmull-Clark basis functions and basis-function-insertion scheme to construct eTHCCS.

3.1. Generalized Catmull-Clark Basis Functions

Here we aim to generalize the derivation of Catmull-Clark basis functions to invalid elements. Recall that an
invalid element contains more than one extraordinary node. Once an invalid element is subdivided, the resulting
four high-level elements are all valid over which basis functions are defined in either Eq. (2) or Eq. (7). Instead of
subdividing invalid elements first and then applying the subdivision matrix Ā to derive Eq. (7), in the following we
introduce a more general subdivision matrix, denoted as S, and directly apply it to derive generalized Catmull-Clark
basis functions over an invalid element.

(a) (b)

Figure 2: Generalized subdivision. (a) An invalid element Ω0
0 with its two-ring neighboring nodes labeled; and (b) subdividing Ω0

0 into four
high-level elements Ω1

k (k = 0, . . . , 3), whose two-ring neighboring nodes are labeled in the similar manner.

Given an invalid element, let us first locally label its two-ring neighboring nodes. We follow the manner of labeling
as in Fig. 1(b), labeling the one-ring neighboring nodes of the extraordinary node clockwise. Note that any corner
node of an invalid element can be an extraordinary node. For instance, in Fig. 2(a), Ω0

0 is the invalid element under
study. Let N0, N1, N2 and N3 be the valence numbers of four corner nodes of Ω0

0, labeled as Node 1, Node 6, Node 5
and Node 4, respectively. We start labeling the one-ring neighboring nodes of Node 1 in clockwise, from 2, 3, until
i0 = 2N0 + 1. Then we consider the one-ring neighboring nodes of Node 6. Among them only 2N1 + 1 − 6 = 2N1 − 5
nodes remain unlabeled, and we label them from i0 + 1 until i1, where i1 = i0 + 2N1 − 5 = 2(N0 + N1) − 4. Here Node
6 is valence-3, so we have N1 = 3 and i1 = i0 + 1. Next for Node 5, there are 2N2 + 1 − 6 = 2N2 − 5 nodes remaining
unlabeled if N3 > 3; otherwise, there are 2N2 +1−7 = 2N2−6 unlabeled nodes if N3 = 3, because one more node was
labeled already when we labeled the one-ring neighboring nodes for Node 1. We label them from i1 + 1 until i2 where
i2 = i1 + 2N2 − 5 = 2(N0 + N1 + N2) − 9 (N3 > 3) or i2 = i1 + 2N2 − 6 = 2(N0 + N1 + N2) − 10 (N3 = 3). Similarly for
Node 4, the number of unlabeled nodes is 2N3 + 1 − 7 = 2N3 − 6 if N3 = 3, otherwise it is 2N3 + 1 − 8 = 2N3 − 7. We
label them from i2 + 1 until i3 where i3 = 2

∑3
i=0 Ni − 16. The labels are shown in detail in Fig. 2(a). The associated

basis functions are the generalized basis functions to be derived, and we denote them in the vector form,

B̄ = [B̄1, B̄2, . . . , B̄i3 ]T . (9)
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Correspondingly, their control points are denotes as P̄ = [P̄1, P̄2, . . . , P̄i3 ]T . As shown in Fig. 2(b), we subdivide
Ω0

0 into four smaller elements Ω1
k (k = 0, . . . , 3) and follow in the same manner to label their two-ring neighboring

nodes. Note that Node 1, Node j0 + 1, Node j1 + 1 and Node j2 + 1 have the same valence numbers as the four corner
nodes of Ω0

0 in Fig. 2(a). Similarly, we can derive the following relationships, j0 = 2N0 + 1, j1 = 2(N0 + N1) − 1,
j2 = 2(N0 +N1 +N2)−3 and j3 = 2(N0 +N1 +N2 +N3)−7. The corresponding basis functions are Stam’s Catmull-Clark
basis functions defined by either Eq. (2) or Eq. (7), denoted as

B = [B1, B2, . . . , B j3 ]T . (10)

Their control points are P = [P1, P2, . . . , P j3 ]T , which are calculated by

P = SP̄, (11)

where S can be directly obtained from the Catmull-Clark subdivision rule. For instance, Vertex 1 is relocated to a
weighted average of its neighboring vertices, whose indices are I = {1, 2, 3, . . . , i0}. Then the 1st row, j-th ( j ∈ I)
column element of S is filled with the corresponding Catmull-Clark subdivision coefficient. Other elements in S can
be filled in the same manner. The configuration of S is given in Appendix A. Assume that the evaluation of Ω0

0 using
B̄ yields the same limit surface as that of Ω1

0 ∼ Ω1
3 using B, and we have

B̄T P̄ = BT P = BT SP̄ = (ST B)T P̄. (12)

Eq. (12) holds no matter what the values of P̄ are. Therefore we have

B̄ = ST B. (13)

(a) k = 0 (b) k = 1 (c) k = 2 (d) k = 3

Figure 3: Generalized selections of basis functions for high-level elements Ω0
k (k = 0, . . . , 3).

We next find the relationship between B and Eq. (2) or Eq. (7) so that we can obtain an explicit expression
for B̄. Given a pair of parametric coordinates (ξ, η) in Ω0

0, we can locate it in one of the four elements (Ω1
k , where

k = 0, . . . , 3) in Fig. 2(b), and only the two-ring basis functions of that element are non-zero at (ξ, η). Thus B̄ is
defined piecewise. For instance, if 0 ≤ ξ < 1/2 and 0 ≤ η < 1/2, (ξ, η) is located in the irregular element Ω1

0 and only
the two-ring basis functions are non-zero over Ω1

0, as shown in Fig. 3(a). These 2N0 + 8 basis functions (denoted as
B0) are selected from B in Eq. (13). To directly use Eq. (7), we need to sort B0 such that the basis functions in B0
have the same order as in Fig. 1(b), that is,

B0 = [B1, B2, . . . , B j0 , B j1+1, B j0+2, B j0+1, B j1 , B j1+3, B j2+1, B j2+3]T . (14)

Note that in B0, the first 2N0 + 1 basis functions correspond to the extraordinary node and its one-ring neighboring
nodes (from 1 to j0), and the next 4 basis functions are sorted along the opposite η0 direction, and the last 3 basis
functions follow the opposite ξ0 direction. This specific manner of sorting follows Stam’s [24]. Then we can directly
obtain B0 using Eq. (7) by replacing B` (` = 0) with B0. We define a set of pairs as

P0 ={(1, 1), (2, 2), . . . , (2N0 + 1, j0), (2N0 + 2, j1 + 1), (2N0 + 3, j0 + 2), (2N0 + 4, j0 + 1), (2N0 + 5, j1),
(2N0 + 6, j1 + 3), (2N0 + 7, j2 + 1), (2N0 + 8, j2 + 3)},

(15)
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which represents the element correspondence between B0 and B. For (i, j) ∈ P0, the i-th element in B0 is the j-th
element in B. For instance in (2N0 + 2, j1 + 1), the (2N0 + 2)-th element in B0 is B j1+1, which is also the ( j1 + 1)-th
element in B. Moreover since 0 ≤ ξ < 1/2 and 0 ≤ η < 1/2, the basis functions in B other than those in B0 are all zero.
Then we can obtain B by a linear transformation, B = P̄T

0 B0, where P̄0 is the so-called selection matrix with respect
to Ω1

0 and it maps the selected basis functions to the correct positions in B. P̄0 is a matrix of dimension (2N0 + 8) × j3
and all its elements are zero except that the i-th row, j-th column element is 1, where (i, j) ∈ P0. Plugging B = P̄T

0 B0
into Eq. (13), we have

B̄ = (P̄0S)T B0, (16)

when 0 ≤ ξ < 1/2 and 0 ≤ η < 1/2.
Likewise, other selections are shown in Fig. 3(b–d) for (ξ, η) ∈ [1/2, 1] × [0, 1/2), (ξ, η) ∈ [1/2, 1] × [1/2, 1]

and (ξ, η) ∈ [0, 1/2) × [1/2, 1], respectively. The corresponding selection matrix P̄k has the dimension (2Nk + 8) × j3
(k = 1, 2, 3) and the selected basis functions Bk are sorted with the aid of the corresponding set of pairs Pk. Note that
Ω1

1 in Fig. 3(b) is also an irregular element, so P̄1 and B1 are similar to P̄0 and B0, respectively. However in Fig. 3(c,
d), Ω1

2 and Ω1
3 are regular elements, and thus the selected basis functions B2 and B3 can be directly obtained from Eq.

(2). B2 and B3 are sorted following Fig. 1(a). For example, the set of pairs of B2 is defined as

P2 ={(1, j2), (2, j1 + 5), (3, j1 + 4), (4, j2 + 2), (5, j1 + 2), (6, j1 + 1), (7, j1 + 3), (8, j2 + 1),
(9, j0 + 3), (10, j0 + 2), (11, 5), (12, 4), (13, j1), (14, j0 + 1), (15, 6), (16, 1)}.

(17)

In summary, we derive the basis functions over an invalid element as

B̄(ξ, η) = (P̄kS)T Bk(ξk, ηk), k = 0, 1, 2, 3, (18)

where (ξk, ηk) are the parametric values defined in the local coordinate system of Ω1
k (k = 0, . . . , 3). Note that in Fig.

3, the local coordinate systems of four elements Ω1
k = [0, 1] × [0, 1] (k = 0, . . . , 3) do not coincide with that of Ω0

0.
Given the parametric coordinates (ξ, η) in Ω0

0, we need to transform them to parametric values consistent with the
local coordinate system of Ω1

k , where k = 0, . . . , 3. We have

Ω1
0 : (ξ0, η0) = (2ξ, 2η) if 0 ≤ ξ < 1

2 and 0 ≤ η < 1
2 ,

Ω1
1 : (ξ1, η1) = (2η, 2 − 2ξ) if 1

2 ≤ ξ ≤ 1 and 0 ≤ η < 1
2 ,

Ω1
2 : (ξ2, η2) = (2 − 2ξ, 2 − 2η) if 1

2 ≤ ξ ≤ 1 and 1
2 ≤ η ≤ 1,

Ω1
3 : (ξ3, η3) = (2 − 2η, 2ξ) if 0 ≤ ξ < 1

2 and 1
2 ≤ η ≤ 1.

(19)

Remark 3.1. In classification, we have a total of three types of elements in the control mesh: regular elements,
irregular elements and invalid elements. The first two types are all valid. The basis functions over a regular element
can be directly obtained from Eq.(2). For an irregular element, Eq. (7) can be used to calculate the basis functions
with support on it. Eq. (18) defines the generalized Catmull-Clark basis functions over an invalid element, any node
of which can be an extraordinary node. The generalized Catmull-Clark basis functions also satisfy partition of unity,
the proof of which is the same as that in [28] except that generalized subdivision matrix S is involved. However, we
do not allow all its four corners to be valence-3, in which case the basis functions are linearly dependent on the invalid
element [18]. Moreover, Eq. (13) indicates refinability is also valid for generalized Catmull-Clark basis functions.
Therefore we can use them to construct eTHCCS. With the generalized Catmull-Clark basis functions, preprocessing
of input control meshes is no longer required to refine invalid quadrilaterals, which is a significant improvement on
efficient local refinement, especially for complex quadrilateral meshes with many extraordinary points.

3.2. Basis-Function-Insertion Scheme

The original development of THCCS (or HB-splines, THB-splines) employs a basis-function-refinement scheme,
which replaces a basis function with its children to enlarge the spline space. As a result, we need to refine all the
elements within the support of to-be-refined basis functions. In cubic splines and Catmull-Clark subdivision, this
leads to the refinement of all the two-ring neighboring elements, which is not efficient to capture abrupt change in
geometric or solution features. Instead, in the following we develop a new basis-function-insertion scheme. With
this scheme, we only need to select the support of inserted high-level basis functions as the to-be-refined region. In
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contrast, the to-be-refined region in THB-splines and THCCS is the support of low-level basis functions. For example
we consider cubic splines in Fig. 4. A basis function at Level ` has support over the two-ring neighboring Level-`
elements, as shown in blue in Fig. 4(a). A Level-(` + 1) basis function has support over the one-ring neighboring
Level-` elements (Fig. 4(b)), and a Level-(` + 2) basis function has support only on one Level-` element (Fig. 4(c)).
In the following, we study how to insert Level-(` + 1) basis functions, which requires refinement of their one-ring
neighboring elements only.

(a) Level ` (b) Level ` + 1 (c) Level ` + 2

Figure 4: The support of basis functions.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 5: The identification of to-be-refined one-ring neighboring elements of a regular node (a), a valence-3 extraordinary node (b), two nodes (c),
and four nodes (d). Refinement of one-ring neighboring elements of a regular node (f), a valence-3 extraordinary node (g), two nodes (h), and four
nodes (i). (e) and (j) are equivalent case of the basis-function-refinement scheme.

In the basis-function-insertion scheme, at each refinement step we need to identify and refine the one-ring neigh-
boring elements of one or multiple nodes. Local refinement can be triggered by a user-defined region or simulation
error. In geometric design, designers locally refine regions of interest to add more features. In analysis, elements with
large error need to be refined to improve numerical performance. Assume that we use simulation error to identify
to-be-refined elements. We group all the one-ring neighboring elements for each Level-` node and compare their
error with a given threshold. Then a set of elements is identified as to-be-refined. In the control mesh we have both
regular nodes and extraordinary nodes. Let us first study the refinement of one-ring neighboring elements of a regular
node. Assume we have a local mesh at Level ` (` ≥ 0) shown in Fig. 5(a), where a regular node is marked with a red
dot and its four one-ring neighboring elements are to be refined, as marked in blue. After refinement, we obtain 16
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Level-(` + 1) elements as shown in Fig. 5(f). Next we define the basis-function-insertion rule to insert a Level-(` + 1)
basis function.

Basis-Function-Insertion Rule. During local refinement around a node at Level `, a Level-(` + 1) basis function has
to be inserted associated with this node if all its two-ring Level-(` + 1) neighboring elements are generated.

The basis-function-insertion rule is straightforward since a (generalized) Catmull-Clark basis function has support
over its two-ring neighboring elements. Back to Fig. 5(f), the newly generated 16 Level-(` + 1) elements are the
two-ring neighborhood of the green dot. Therefore according to the basis-function-insertion rule, there exists one
basis function associated with this node. In this manner, the refinement of the one-ring neighboring elements of a
regular node at Level ` leads to the insertion of a Level-(` + 1) basis function.

The same idea can be used to handle extraordinary nodes. In Fig. 5(b), the elements in blue are the one-ring
neighboring elements of a valence-3 extraordinary node (red dot). They are refined and 12 Level-(` + 1) elements
are generated, as shown in Fig. 5(g). According to the basis-function-insertion rule, the Level-(` + 1) basis function
associated with the green dot is inserted. In general, for the extraordinary node of any valence N, by refining its
one-ring neighboring elements we obtain 4N Level-(` + 1) elements together with one inserted Level-(` + 1) basis
function.

The number of inserted high-level basis functions varies when the one-ring neighboring elements of multiple
nodes are refined. For instance, Fig. 5(c) shows the one-ring neighboring elements (in blue) of two nodes of an edge.
The refinement of these elements is shown in Fig. 5(h), where we observe that 3 basis functions associated with the
green dots have to be inserted according to the basis-function-insertion rule. Moreover, in the case of four corner
nodes of an element as shown in Fig. 5(d), 9 Level-(` + 1) basis functions are inserted; see Fig. 5(i). When we
have the case in Fig. 5(e), the one-ring neighboring elements of those red dots are actually the two-ring neighboring
elements of the valence-3 extraordinary node. Thus the refinement leads to the equivalent case of the basis-function-
refinement scheme. The basis function of the extraordinary node is replaced by its children associated with green dots
in Fig. 5(f). In general, the basis-function-insertion scheme yields less refinement than the basis-function-refinement
scheme. Practical cases can be more complicated, but we can always follow the basis-function-insertion rule to
determine where the basis functions need to be inserted. The insertion of the basis function enlarges the spline space,
leading to the nested property, which will be proved later in Appendix B. The basis-function-refinement scheme can
also be directly applied to truncated hierarchical B-splines.

3.3. Truncation

(a) (b) (c) (d) (e)

Figure 6: Five examples of Level-` to-be-truncated basis functions (green circles).

Inserting high-level basis functions destroys partition of unity and changes the geometry. To resolve this issue,
we apply a truncation mechanism to the neighboring low-level basis functions. A basis function needs to be truncated
if any of its children is added in the spline space. Let B` be the set of Level-` basis functions. The inserted basis
functions are at Level ` + 1 and they are added into the spline space, denoted as B`+1. Then some Level-` basis
functions (B`t ) need to be truncated if any of their children is an inserted Level-(` + 1) basis function, and we identify
these basis functions as

B`t = {B`i ∈ B
` | chdB`i ∩ B

`+1 , ∅}. (20)
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For the five cases studied in Fig. 5, Fig. 6 illustrates how Eq. (20) is used to identify to-be-truncated basis functions.
After refining the blue elements, we need to truncate basis functions associated with the corner nodes of all the refined
elements, as marked with green circles. According to the refinability property, a Level-` basis function B`i can be
expressed as a linear combination of its children, and we have

B`i =
∑

B`+1
j ∈chdB`i

ci jB`+1
j , (21)

where ci j comes from the general subdivision matrix S or Ā. The truncation is performed for basis functions B`i ∈ B
`
t

by removing the children contained in B` from the summation in Eq. (21), that is,

trunB`i =
∑

B`+1
j ∈chdB`i and B`+1

j <B
`+1

ci jB`+1
j . (22)

Note that in Fig. 6(e), all the children of the basis function associated with the blue dot are inserted Level-(`+ 1) basis
functions; see Fig. 5(j). Therefore this basis function becomes a zero function after truncation. In this case we call
such basis functions passive and they no longer exist in the spline space. The other non-zero basis functions are called
active. The passive basis functions are actually the refined basis functions.

Truncating basis functions can help us remove the repeated contribution of high-level basis functions. Consider
a Level-` element Ω`

k and let I`k be the index set of all Level-` basis functions B`i with support on it. Suppose before
inserting any new Level-(` + 1) basis functions, B`i satisfy partition of unity and we have

∑
i∈I`k

B`i = 1. According to
refinability, we further obtain

∑
i∈I`k

B`i =
∑

i∈I`k

∑
j∈C`

i
ci jB`+1

j = 1, where C`
i is the index set of children basis functions

of B`i . Now we insert a Level-(`+1) basis function (B`+1
j′ ) by refinement and B`+1

j′ has support over Ω`
k. The summation

of basis functions over Ω`
k becomes

∑
i∈I`k

∑
j∈C`

i
ci jB`+1

j + B`+1
j′ = 1 + B`+1

j′ . This can be rewritten as∑
i∈I`k

∑
j∈C`

i

ci jB`+1
j + B`+1

j′ =
∑
i∈I`k

∑
j∈C`

i , j, j′

ci jB`+1
j +

∑
i∈I`k

ci j′B`+1
j′ + B`+1

j′ =
∑
i∈I`k

∑
j∈C`

i , j, j′

ci jB`+1
j + 2B`+1

j′ , (23)

where
∑

i∈I`k
ci j′B`+1

j′ = B`+1
j′
∑

i∈I`k
ci j′ = B`+1

j′ because
∑

i∈I`k
ci j′ = 1 holds for Catmull-Clark subdivision and knot

insertion algorithm [28]. From Eq. (23) we can observe that the summation of basis functions over Ω`
k counts the

inserted basis function B`+1
j′ twice. By removing ci j′B`+1

j′ from the refinability relationship, we can achieve partition of
unity. Furthermore, the geometry is preserved during local refinement, which will be proved in Appendix B.

3.4. Construction of eTHCCS
Similar to the construction of THCCS [28], we follow three steps to construct eTHCCS: identification of to-be-

refined elements and to-be-truncated basis functions (Step 1), refinement of identified elements and truncation of
identified basis functions (Step 2), and collection of all the hierarchical basis functions and elements (Step 3).

We start with an initial control mesh that can be any quadrilateral mesh, except the one with all its vertices that
are valence-32. Given the input control mesh M0, the initial set of eTHCCS basis functions is defined by Level-0
basis functions B0 associated with M0, and the entire domain is defined as suppB0. The initial elements of all the
quadrilaterals in M0 are denoted as E0. eTHCCS is recursively constructed up to a desired maximum level, `max
(`max > 0), which allows us to study two consecutive levels (Level ` and Level ` + 1) at one time. Suppose we have
constructed Level-` elements and basis functions, and now we want to construct Level ` + 1. Let B` be the set of
Level-` basis functions and E` be the set of Level-` elements. E` defines the sub-domain (Ω`) at Level `. The eTHCCS
basis functions of ` levels are collected in the set B`eTHCCS, whereas the eTHCCS elements are in E`eTHCCS.

Identification (Step 1). As discussed in Section 3.2 we use simulation error to identify to-be-refined elements.
Then a set of elements is identified as to-be-refined if their error is larger than a given threshold, denoted as E`r .
Besides, all the basis functions associated with the corner nodes of these elements are identified as to-be-truncated
basis functions (B`t ); see Fig. 6(a–e).

2A mesh with all valence-3 vertices produces linearly dependent blending functions [18] and thus cannot be used in analysis.
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Refinement and Truncation (Step 2). Refinement of elements in E`r can be easily obtained by quadtree subdi-
vision. After refinement, elements in E`r are defined as passive whereas the newly generated Level-(` + 1) elements
(E`+1) are defined as active. Only active elements will be used in eTHCCS construction. All the Level-(`+1) elements
define the sub-domain at Level ` + 1, denoted as Ω`+1. It is obvious that Ω`+1 ⊆ Ω`. We check which node has all its
two-ring neighboring elements generated. According to the basis-function-insertion rule, Level-(`+1) basis functions
(B`+1) are inserted for such nodes and they will be added in the eTHCCS space. The corresponding Level-(`+ 1) con-
trol points are calculated by the Catmull-Clark subdivision rule. Next, the Level-` basis functions in B`t are truncated
according to Eq. (22). With all its children inserted, a basis function becomes zero and it is passive, so it no longer
exists in eTHCCS.

Collection (Step 3). On one hand, by refinement elements in E`r become passive and basis functions in B`t are
truncated, some of which are even passive ones. Therefore, we remove E`r elements from E`eTHCCS and update the
basis functions of B`t in B`eTHCCS. On the other hand, we obtain new active Level-(`+ 1) elements and basis functions,
which are used to construct eTHCCS of (` + 1) levels. We have

E`+1
eTHCCS = E`eTHCCS ∪ E

`+1 (24)

and
B`+1

eTHCCS = B`eTHCCS ∪ B
`+1. (25)

We can recursively perform Step 1 to Step 3 until the maximum level `max is reached. The construction enlarges
the spline space of eTHCCS with nested sub-domains as the level increases, that is,

Ω0 ⊇ Ω1 ⊇ · · · ⊇ Ω`max (26)

and
spanB0

eTHCCS ⊆ spanB1
eTHCCS ⊆ · · · ⊆ spanB`max

eTHCCS. (27)

We will prove this property in Appendix B.

Remark 3.2. Given a local region at Level `, in this paper we focus on inserting Level-(` + 1) basis functions such
that we can recursively construct eTHCCS level by level. However, inserting basis functions at higher levels is also
supported in our algorithm. For instance, inserting a Level-(` + 2) basis function requires refinement of a Level-`
element into 16 Level-(` + 2) elements, and the truncation of a Level-` basis function needs its Level-(` + 2) children
basis functions. The construction procedure is the same as discussed in Sections 3.2 and 3.3.

4. Examples and Discussion

In this section, we first study the analysis-suitability of generalized Catmull-Clark basis functions via three patch
tests. Then we solve a benchmark problem: the Laplace equation on the L-shaped domain, where both THCCS [28]
and eTHCCS basis functions are used to study the convergence behavior. In the end, we solve the Laplace equation
over four complex models. Table 1 summarizes the statistics of the tested models.

4.1. Patch Tests

For patch tests, we solve a 2D linear elasticity problem by applying uniform tension to a square (Young’s mod-
ulus E = 1, Poisson’s ratio µ = 0.3). We use three input irregular quadrilateral meshes with different numbers of
extraordinary nodes, as shown in Figs. 7(a) ∼ 9(a). The meshes in 8(a) and 9(a) have elements with more than one
extraordinary node. In particular, all the nodes of the central element are valence-3 in 9(a). Recall that according to
Peters [18], subdivision functions are not linearly independent on such elements, which, however, does not violate the
global linear independence condition unless all the nodes in the mesh are valence-3. Our application only requires
global linear independence, and generalized Catmull-Clark basis functions are used here. To accurately integrate an
element with extraordinary nodes, we subdivide the elements into a sequence of sub-elements, as indicated in Fig.
1(d), and in each sub-element, we adopt 4 × 4 Gaussian integration. Two strain components in each patch test are
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Table 1: Statistics of all the tested models

Models # Input # Input # Invalid ε # Levels # Levels DOF- DOF- DOF
Nodes Elements Elements THCCS eTHCCS THCCS eTHCCS Ratio

L-Regular 153 128 0 2E-4 5 7 773 391 50.6%
L-Irregular 221 192 0 2.5E-3 4 6 807 549 68.0%
Genus-3 3,068 3,072 0 0.1 5 5 4,016 3,427 85.3%
Bunny 3,023 3,021 4 0.1 5 5 4,682 3,482 74.4%
Venus 1,559 1,552 899 0.5 4 5 6,646 1,822 27.4%
Head 2,909 2,907 1,572 0.5 5 4 11,318 3,207 28.3%

Note: # stands for number and ε is the given threshold. DOF Ratio = (eTHCCS DOF)/(THCCS DOF).

shown in Figs. 7(b, c) ∼ 9(b, c), where the black curves are the isoparametric lines projected onto the physical do-
main. We calculate the error in the L2 norm and H1 norm, and display them with respect to subdivision levels used for
Gauss integration of irregular elements; see Figs. 7(d) ∼ 9(d). The error decreases as the subdivision level increases.
However, it remains of the same order when we use more than 15 levels. As discussed in [20, 17, 28], Catmull-Clark
basis functions have limitations in analysis. Directly applying Gaussian quadrature over elements with extraordinary
nodes introduces numerical error, because Catmull-Clark basis functions are infinite piecewise polynomials. Further
study is needed to develop efficient and accurate quadrature schemes.

(a) (b) (c) (d)

Figure 7: Patch test 1 on an irregular quadrilateral mesh with 2 extraordinary nodes using generalized Catmull-Clark basis functions. (a) The input
mesh and boundary conditions; (b, c) two strain components in X − X and Y − Y directions, respectively; and (d) error with respect to subdivision
levels used for Gauss integration.

(a) (b) (c) (d)

Figure 8: Patch test 2 on an irregular quadrilateral mesh with 6 extraordinary nodes using generalized Catmull-Clark basis functions. (a) The input
mesh and boundary conditions; (b, c) two strain components in X − X and Y − Y directions, respectively; and (d) error with respect to subdivision
levels used for Gauss integration.

4.2. L-shaped Problem
Fig. 10(a) shows the problem setting of the Laplace equation ∆u = 0 over the L-shaped domain [−1, 1]2\[0, 1]2,

where the Dirichlet boundary conditions (ΓD) are strongly imposed. The analytical solution is available in polar
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(a) (b) (c) (d)

Figure 9: Patch test 3 on an irregular quadrilateral mesh with 8 extraordinary nodes using generalized Catmull-Clark basis functions. (a) The input
mesh and boundary conditions; (b, c) two strain components in X − X and Y − Y directions, respectively; and (d) error with respect to subdivision
levels used for Gauss integration.

(a) (b) (c)

Figure 10: Laplace equation on the L-shaped domain. (a) Geometry and problem settings; (b) input regular control mesh; and (c) input irregular
control mesh.

coordinates (r, θ),

u(r, θ) = r2/3 sin(2θ/3 − π/3), where r > 0 and π/2 ≤ θ ≤ 2π. (28)

We use two input control meshes: a regular mesh and an irregular mesh, shown in Fig. 10(b, c), respectively. For each
mesh, three refinement schemes are studied: uniform refinement, THCCS [28] and eTHCCS. The uniform refinement
simply subdivides all the elements at each refinement step. The error is assessed in the L2 norm and H1 semi-norm
for each element, as well as the entire domain. In THCCS or eTHCCS, to-be-refined elements are identified in terms
of two-ring or one-ring neighborhood of a node. Therefore, we convert the element-wise error to the node-wise
error by summing the error of two-ring (in THCCS) or one-ring (in eTHCCS) neighboring elements of the node. At
each refinement step, we refine elements with the node-wise error larger than η · emax, where η (0% < η ≤ 100%)
refers to a prescribed percentage and emax is the maximum node-wise error. In this problem, we set η = 100% to
refine the elements with maximum node-wise error. To improve the accuracy of numerical integration surrounding
an extraordinary node, if any element within its two-ring neighborhood is to be refined, we refine all its two-ring
neighboring elements. The adaptive analysis terminates when the L2 error (or H1 semi-norm) over the entire domain
is smaller than a given threshold ε. Fig. 11(a, c) shows the distribution of element-wise L2 error using THCCS at
the final step, and Fig. 11(b, d) shows this result using eTHCCS. We observe that the refinement on both regular and
irregular meshes is more localized at the sharp corner, where there is a singularity in the solution. In Fig. 12, the L2

error and H1 semi-norm are plotted with respect to degrees of freedom (DOF). eTHCCS achieves the same accuracy
with only 50.6% DOF of THCCS in the regular mesh and 68% of THCCS in the irregular mesh.
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(a) (b) (c) (d)

Figure 11: L2 error distribution of numerical solutions on the L-shaped domain at the final refinement step: (a) the regular mesh with THCCS; (b)
the regular mesh with eTHCCS; (c) the irregular mesh with THCCS; and (d) the irregular mesh with eTHCCS.

4.3. Complex Models

We also solve the Laplace equation on four complex models: the genus-3 model (Fig. 13), the bunny model (Fig.
14), the Venus model (Fig. 15) and the head model (Fig. 16). The input quadrilateral meshes have no elements with
nodes that are all valence-3. However, the bunny model, the Venus model and the head model have invalid elements,
where generalized Catmull-Clark basis functions are used. To create a solution field with abrupt local change, we
strongly prescribe the solution to have a certain value, say 100, on some elements, and then set a very different value,
say 1, over some elements nearby. And we study the performance of THCCS and eTHCCS. Figs. 13(a) – 16(a)
show the input meshes with boundary conditions, where the elements marked in red are set at 100 and the elements
in blue are set at 1. Due to the lack of analytical solutions, the L2 error for each element is approximated by using the
so-called bubble function [25]. Then following the same procedure as in solving the L-shaped problem, we perform
adaptive analysis until the relative maximum error is smaller than a given threshold ε. The error is defined as en/e0,
where en is the maximum element-wise error after n refinement steps and e0 is the maximum element-wise error of
THCCS at the initial step. We set ε = 0.1 for the genus-3 and bunny models, and ε = 0.5 for the Venus and head
models. We also set η = 70% to refine more elements than for the L-shaped problem at each refinement step.

At the final step, the solutions using THCCS are shown in Figs. 13(b) – 16(b) whereas the solutions using
eTHCCS are shown in Figs. 13(c) – 16(c). From Table 1, eTHCCS is the most efficient method, especially in the
Venus and head models, where at the final step, the degrees of freedom are only 27.4% and 28.3% of those using

(a) (b)

Figure 12: Convergence curves with respect to L2 error (a) and H1 error (b). The legend “UR” represents uniform refinement.
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(a) (b) (c)

(d) (e)

Figure 13: Solving Laplace equation over a genus-3 model. (a) Input quadrilateral mesh with boundary conditions; (b) numerical solution using
THCCS; (c) numerical solution using eTHCCS; (d, e) zoom-in picture of the window in (b, c) respectively.

(a) (b) (c)

(d) (e)

Figure 14: Solving Laplace equation over a bunny model. (a) Input quadrilateral mesh with boundary conditions; (b) numerical solution using
THCCS; (c) numerical solution using eTHCCS; (d, e) zoom-in picture of the window in (b, c) respectively.
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THCCS. The significant improvement mainly benefits from the generalized Catmull-Clark basis functions. As the
input quadrilateral meshes of the Venus model and the head model have a large number of invalid elements, THCCS
needs to refine all such elements, resulting in an almost uniform refinement; see Figs. 15(b) and 16(b). In contrast,
generalized Catmull-Clark basis functions can be directly applied to the input meshes and the refinement is only
performed for elements with large error, as shown in Figs. 15(c) and 16(c). On the other hand, the genus-3 model
and the bunny model only have a few invalid elements. The improvement of efficiency mainly benefits from the
basis-function-insertion scheme. eTHCCS only uses 85.3% DOF of THCCS in the genus-3 model and 74.4% DOF of
THCCS in the bunny model. The basis-function-insertion scheme works well especially when the solution field has
significant local features.

5. Conclusion and Future Work

In conclusion, we develop eTHCCS with generalized Catmull-Clark basis functions and a new basis-function-
insertion scheme, aiming to improve the efficiency of local refinement. The generalized Catmull-Clark basis functions
directly work on invalid elements with more than one extraordinary node, providing a basis for isogeometric analysis
of arbitrary quadrilateral meshes. The basis-function-insertion scheme releases the selection restriction of the to-be-
refined region in THB-splines and THCCS. In cubic splines, it allows refinement of a single element at each refinement
step, while THB-splines or THCCS need to refine at least two-ring neighboring elements. In practice, as we construct

(a) (b) (c)

(d) (e)

Figure 15: Solving Laplace equation over a Venus model. (a) Input quadrilateral mesh with boundary conditions; (b) numerical solution using
THCCS; (c) numerical solution using eTHCCS; (d, e) zoom-in picture of the window in (b, c) respectively.
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(a) (b) (c)

(d) (e)

Figure 16: Solving Laplace equation over a head model. (a) Input quadrilateral mesh with boundary conditions; (b) numerical solution using
THCCS; (c) numerical solution using eTHCCS; (d, e) zoom-in picture of the window in (b, c) respectively.

eTHCCS level by level, we refine one-ring neighboring elements. The basis-function-insertion scheme can also be
applied to truncated hierarchical B-splines. Like THCCS, eTHCCS preserves geometry and produces nested spline
spaces. eTHCCS basis functions also satisfy partition of unity, convex hull and global linear independence. We use
five numerical models to test the proposed method. From the results, we can observe that eTHCCS achieves the same
accuracy with fewer degrees of freedom than THCCS. In the future, it may be promising to employ the proposed
method on hierarchical T-splines, where the patch test can be successfully passed without introducing huge numbers
of quadrature points.
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Appendix A: Generalized Subdivision Matrix and Selection Matrices

For an element with more than one extraordinary nodes, we develop the generalized subdivision matrix to perform
local Catmull-Clark subdivision. The generalized subdivision matrix S j3×i3 is used to calculate the new j3 vertices
at Level ` + 1 (Fig. 2(b)) from the neighboring i3 vertices at Level ` (Fig. 2(a)). S is constructed directly by the
Catmull-Clark subdivision rule. Following the indices locally labeled as in Fig. 2, we have
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1 2 3 4 5 6 · · · i0 +1 +2 · · · i1 +1 +2 · · · i2 +1 · · · i3
1 aN1 bN1 cN1 bN1 cN1 bN1 · · · 0 0 0 · · · 0 0 0 · · · 0 0 · · · 0
2 d d e e 0 0 · · · e 0 0 · · · 0 0 0 · · · 0 0 · · · 0
3 f f f f 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 · · · 0
...

...
. . .

. . .
. . .

. . .

j0 f f 0 0 0 0 · · · f 0 0 · · · 0 0 0 · · · 0 0 · · · 0
+1 bN2 0 0 cN2 bN2 aN2 · · · 0 cN2 bN2 · · · cN2 0 0 · · · 0 0 · · · 0
+2 e 0 0 0 0 d · · · 0 0 0 · · · e 0 0 · · · 0 0 · · · 0
...

...
. . .

. . .
. . .

. . .

j1 0 0 0 0 0 f · · · 0 0 0 · · · f 0 0 · · · 0 0 · · · 0
+1 cN3 0 0 bN3 aN3 bN3 · · · 0 bN3 cN3 · · · 0 cN3 bN3 · · · cN3 0 · · · 0
+2 0 0 0 0 d e · · · 0 d e · · · 0 0 0 · · · e 0 · · · 0
...

...
. . .

. . .
. . .

. . .

j2 0 0 0 0 f 0 · · · 0 f 0 · · · 0 0 0 · · · f 0 · · · 0
+1 bN4 cN4 bN4 aN4 bN4 cN4 · · · 0 0 0 · · · 0 bN4 cN4 · · · 0 cN4 · · · cN4

+2 0 0 0 d e 0 · · · 0 0 0 · · · 0 d e · · · 0 0 · · · e
...

...
. . .

. . .
. . .

. . .

j3 0 0 0 f 0 0 · · · 0 0 0 · · · 0 f 0 · · · 0 0 · · · f
(29)

where aNk = 1 − 7
4N2

k
, bNk = 3

2N2
k
, cNk = 1

4N2
k

(k = 0, 1, 2, 3), d = 3
8 , e = 1

16 , and f = 1
4 . The generalized subdivision

matrix depends on the valence number of four corners of the element.

Appendix B: Geometry Preservation and Nested Property

In Section 3, we claim that eTHCCS can preserve the geometry and possesses nested property. In the following,
we mathematically prove these two properties.

Proposition 1. The geometry is preserved during the construction of eTHCCS from Level ` (` ≥ 0) to Level ` + 1.

Proof. We prove this proposition by constructing Level ` + 1 from Level ` (` ≥ 0), showing that the geometry is the
same before and after refinement. After refinement, active Level-` elements remain the same, leading to the same
geometry as before. Therefore, we only need to focus on the Level-(` + 1) elements. Let Ω`+1

k be a Level-(` + 1)
element obtained by refining a Level-` element Ω`

k′ . Thus we have Ω`+1
k ⊆ Ω`

k′ . After refinement, the portion of the
geometry (S|Ω`+1

k
) corresponding to Ω`+1

k is calculated as

S|Ω`+1
k

=
∑

i∈I`+1
a

P`+1
i B`+1

i +
∑
j∈T `

P`
jtrunB`j +

∑
j∈I`a\T `

P`
jB

`
j, (30)

where I`a, I`+1
a denote the index set of active Level-` and Level-(` + 1) non-truncated basis functions, T ` is the index

set of Level-` truncated basis functions, and P`
i , P`+1

i are Level-` and Level-(` + 1) control points, respectively. Eq.
(30) consists of a summation of three terms because active Level-(`+1) basis functions (B`+1

j ), Level-` truncated basis
functions (trunB`j) and other active Level-` basis functions (B`j) may all have support on Ω`+1

k . According to Eq. (22),
trunB`j can be expressed as

trunB`j =
∑

i∈I`+1\I`+1
a

c jiB`+1
i , (31)

where I`+1 represents an index set of basis functions associated with the Catmull-Clark mesh obtained by ` + 1
subdivisions. Note that an active non-truncated Level-` basis function B`j ( j ∈ I`a\T

`) does not have any active
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children at Level ` + 1 (otherwise it contradicts the definition of truncation). According to Eq. (21), we have

B`j =
∑

i∈I`+1\I`+1
a

c jiB`+1
i . (32)

Substituting Eqs. (31) and (32) into Eq. (30), we have

S|Ω`+1
n

=
∑

i∈I`+1
a

P`+1
i B`+1

i +
∑
j∈T `

P`
j

 ∑
i∈I`+1\I`+1

a

c jiB`+1
i

 +
∑

j∈I`a\T `

P`
j

 ∑
i∈I`+1\I`+1

a

c jiB`+1
i


=
∑

i∈I`+1
a

P`+1
i B`+1

i +
∑

i∈I`+1\I`+1
a

B`+1
i

∑
j∈I`a

c jiP`
j


=
∑

i∈I`+1
a

P`+1
i B`+1

i +
∑

i∈I`+1\I`+1
a

B`+1
i P`+1

i

=
∑

i∈I`+1

P`+1
i B`+1

i .

(33)

Note that
∑

j∈I`a c jiP`
j = P`+1

i (i ∈ I`+1\I`+1
a ) directly comes from the Catmull-Clark subdivision rule. Recall that the

limit Catmull-Clark subdivision surface can be equivalently calculated from any control mesh in the global refinement
sequence. Thus, Eq. (33) means that the limit surface is calculated by a Level-(` + 1) Catmull-Clark control mesh.
Any other portions of the geometry can be handled in the same manner. Therefore, the limit surface does not change
during the construction of eTHCCS.

The proof of Proposition 1 is similar to the proof of geometry preservation in [28]. In Eq. (31), c ji can all be
zero and B`j does not contribute to the calculation of S|Ω`+1

n
. Actually, this case implies that the children of B`j are

all active basis functions at Level ` + 1 and B`j becomes passive at Level `, which is exactly the same case as for
THCCS construction [28]. The eTHCCS space also has nested property as described in Eq. (26) and Eq. (27). As
the hierarchical level increases, the sub-domain decreases and the eTHCCS is enlarged. Since eTHCCS is recursively
constructed, without loss of generality, we only need to prove that the nested property holds for two consecutive levels,
Level ` (` ≥ 0) and Level ` + 1.

Proposition 2. Given an eTHCCS with levels up to ` (` ≥ 0), Level ` + 1 is constructed using the basis-function-
insertion scheme. The eTHCCS space is enlarged, that is,

spanB`eTHCCS ⊆ spanB`+1
eTHCCS, (34)

where B`eTHCCS and B`eTHCCS contain the eTHCCS basis functions of ` levels and ` + 1 levels, respectively.

Proof. To prove Eq. (34), we only need to prove each basis function in B`eTHCCS can be represented by a linear
combination of basis functions in B`+1

eTHCCS. During eTHCCS construction, the to-be-truncated Level-` basis functions
in B`eTHCCS are used to construct the Level-` truncated basis functions in B`+1

eTHCCS. The other basis functions in
B`eTHCCS remain the same in B`+1

eTHCCS. Therefore, we only need to check those to-be-truncated basis functions. Before
truncation, a to-be-truncated basis function B`i ∈ B

`
THCCS can be expressed by a linear combination of its children,

B`i =
∑
j∈C`

i

ci jB`+1
j =

∑
j∈I`+1

ci jB`+1
j +

∑
j∈C`

i \I
`+1

ci jB`+1
j , (35)

where C`
i is the index set of the children of B`i , and I`+1 is the index set of newly inserted Level-(`+ 1) basis functions.

Note that
∑

i∈C`
i \I

`+1 ci jB`+1
j is actually the truncated basis function with respect to B`i , and we have

B`i =
∑
j∈I`+1

a

ci jB`+1
j + trunB`i , (36)
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where B`+1
j ∈ B`+1

eTHCCS for j ∈ I`+1, and trunB`i ∈ B
`+1
eTHCCS. Therefore, any to-be-truncated basis function can be

expressed by a linear combination of basis functions in B`+1
eTHCCS. To this end, we prove that any basis function in

B`eTHCCS can be represented by a linear combination of those in B`+1
eTHCCS. Therefore Eq. (34) holds and Proposition 2

holds.
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